济宁市2018年中考数学模拟试题及答案

来源:文书网 8.51K

中考过来的朋友肯定都听过一句话“重者恒重”,那么我们从哪发现这些决定我们中考命运的重点呢?除了辅导班的笔记、讲义之外,我们需要充分利用的就是模拟试题,真题指引着未来中考的方向。研究模拟试题,可以让复习更加有的放矢,也可以培养一种“题感”——真实模拟中考的感觉。以下是本站小编给你带来的最新模拟试题,希望能帮到你哈。

济宁市2018年中考数学模拟试题及答案
  济宁市2018年中考数学模拟试题

第I卷(选择题 共30分)

一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求.

1. 实数1,-1,- ,0,四个数中,最小的数是

A.0 B.1 C .- 1 D.-

2. 化简 的结果是

A. -1 B. C. D.

3.把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理正确的是

A.两点确定一条直线 B.垂线段最短

C.两点之间线段最短 D.三角形两边之和大于第三边

4.函数 中的自变量x的取值范围是

A. B. C. D. 且

5.如果圆锥的母线长为5cm,底面半径为2cm,那么这个圆锥的侧面积是

A. B. C. D.

6.从总体中抽取一部分数据作为样本去估计总体的某种属性.下面叙述正确的是

A.样本容量越大,样本平均数就越大 B.样本容量越大,样本的方差就越大

C.样本容量越大,样本的极差就越大 D.样本容量越大,对总体的估计就越准确.

7.如果 ,那么下面各式:① ,② ,③ ,其中正确的是

A. ①② B.②③ C.①③ D.①②③

8.“如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若m、n(m

A. m < a < b< n B. a < m < n < b C. a < m < b< n D. m < a < n < b

9. 如图,将△ABC绕点C(0,1)旋转180°得到△A'B'C,设点A的坐标为 ,则点 的坐标为

A. B. C. D.

10. 如图,两个直径分别为36cm和16cm的球,靠在一起放在同一水平面上,组成如图所示的几何体,则该几何体的俯视图的圆心距是

A.10cm. B.24cm C.26cm. D.52cm.

二、填空题:本大题共5小题,每小题3分,共15分.

11. 如果从一卷粗细均匀的电线上截取1米长的电线,称得它的质量为a克,再称得剩余电线的质量为b克,那么原来这卷电线的总长度是 米.

12. 如图,在△ABC中,∠A=30°,∠B=45°,AC=2 ,则AB的长为 .

13. 若一元二次方程ax2=b(ab>0)的两个根分别是m+1与2m-4,则 = .

14.如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数 的图像上,OA=1,OC=6,则正方形ADEF的边长为 .

15. 如图(1),有两个全等的正三角形ABC和ODE,点O、C分别为△ABC、△DEO的重心;固定点O,将△ODE顺时针旋转,使得OD 经过点C,如图(2)所示,则图(2)中四边形OGCF与△OCH面积的比为 .

三、解答题:本大题共7小题,共55分.

16.(6分)已知 ,求代数式 的值.

17.(6分)如图,正方形AEFG的顶点E、G在正方形ABCD的边AB、AD上,连接BF、DF.

(1)求证:BF=DF;

(2)连接CF,请直接写出BE∶CF的值(不必写出计算过程).

18.(7分)山东省第二十三届运动会将于2014年在济宁举行.下图是某大学未制作完整的三个年级省运会志愿者的统计图,请你根据图中所给信息解答下列问题:

(1)请你求出三年级有多少名省运会志愿者,并将两幅统计图补充完整;

(2)要求从一年级、三年级志愿者中各推荐一名队长候选人,二年级志愿者中推荐两名队长候选人,四名候选人中选出两人任队长,用列表法或树形图,求出两名队长都是二年级志愿者的概率是多少?

19.(8分)济宁市“五城同创”活动中,一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.

(1)求乙工程队单独完成这项工作需要多少天?

(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了x天完成,乙做另一部分用了y天完成,其中x、y均为正整数,且x<46,y<52,求甲、乙两队各做了多少天?

20.(8分) 在数学活动课上,王老师发给每位同学一张半径为6个单位长度的圆形纸板,要求同学们:(1)从带刻度的三角板、量角器和圆规三种作图工具中任意选取作图工具,把圆形纸板分成面积相等的四部分;(2)设计的整个图案是某种对称图形.王老师给出了方案一,请你用所学的知识再设计两种方案,并完成下面的设计报告.

名 称 四等分圆的.面积

方 案 方案一 方案二 方案三

选用的工具 带刻度的三角板

画出示意图

简述设计方案 作⊙O两条互相垂直的直径AB、CD,将⊙O的面积分成相等的四份.

指出对称性 既是轴对称图形又是中心对称图形

21.(9分) 阅读材料:

已知,如图(1),在面积为S的△ABC中, BC=a,AC=b, AB=c,内切圆O的半径为r.连接OA、OB、OC,△ABC被划分为三个小三角形.

∵ .

∴ .

(1)类比推理:若面积为S的四边形ABCD存在内切圆(与各边都相切的圆),如图(2),各边长分别为AB=a,BC=b,CD=c,AD=d,求四边形的内切圆半径r;xK bb1.C om

(2)理解应用:如图(3),在等腰梯形ABCD中,AB∥DC,AB=21,CD=11,AD=13,⊙O1与⊙O2分别为△ABD与△BCD的内切圆,设它们的半径分别为r1和r2,求 的值.

22.(11分)如图,抛物线 与x轴交于A(5,0)、B(-1,0)两点,过点A作直线AC⊥x轴,交直线 于点C;

(1)求该抛物线的解析式;

(2)求点A关于直线 的对称点 的坐标,判定点 是否在抛物线上,并说明理由;

(3)点P是抛物线上一动点,过点P作y轴的平行线,交线段 于点M,是否存在这样的点P,使四边形PACM是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.

绝密☆启用并使用完毕前 试卷类型A

  济宁市2018年中考数学模拟试题答案

一、选择题

题号 1 2 3 4 5 6 7 8 9 10

答案 C D C A B D B A D B

二、填空题

11. (或 ); 12. ; 13.4; 14.2; 15. 4∶3.

三、解答题

16.解:∵ , ∴原式= •••••••••••3分

= =1-1+0=0•••••••••••••••••••••••••••••••••••••••••••6分

17.证明:(1)∵四边形ABCD和AEFG都是正方形,

∴AB=AD,AE=AG=EF=FG,∠BEF=∠DGF=90°,•••••••••••••••••1分

∵BE=AB-AE,DG=AD-AG,∴BE= DG,••••••••••••••••••••••••••2分

∴△BEF≌△DGF. ∴BF=DF.•••••••••••••••••••••••••••••••••••••••••4分

(2)BE∶CF= .•••••••••••••••••••••••••••••••••••••••••••••••6分

18.解:(1)设三年级有x名志愿者,由题意得

x=(18+30+x)×20% . 解得x=12.

答:三年级有12名志愿者.••••••••••••••••••••••••••••1分

如图所示:•••••••••••••••••••••••••••••••••••••••••••3分

(2)用A表示一年级队长候选人,B、C表示二年级队长候选人,D表示三年级队长候选人,树形图为

••••••••••••••5分

从树形图可以看出,有12种等可能的结果,其中两人都是二年级志愿者的情况有两种,

所以P(两名队长都是二年级志愿者)= .•••••••••••••••••••••••••••••••••••••••••••7分

19.解:(1)设乙工程队单独完成这项工作需要x天,由题意得

,解之得x=80.•••••••••••••••••••••••••••••••••••••••••••••••••••3分

经检验x=80是原方程的解.

答:乙工程队单独做需要80天完成.•••••••••••••••••••••••••••••••••••••••••••••••••••••••4分

(2)因为甲队做其中一部分用了x天,乙队做另一部分用了y天,

所以 ,即 ,又x<46,y<52,•••••••••••••••••••••••••••••5分

所以 ,解之得42

因为x、y均为正整数,所以x=45,y=50.•••••••••••••••••••••••••••••••••••••••••••••••••7分

答:甲队做了45天,乙队做了50天.•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••8分

20.本题每空1分,共8分;本答案仅供参考,如有其它设计,只要正确均给分.

名称 四等分圆的面积

方案 方案一 方案二 方案三

选用的工具 带刻度的三角板 带刻度三角板、量角器、圆规. 带刻度三角板、圆规.

画出示意图

简述设计方案 作⊙O两条互相垂直的直径AB、CD,将⊙O的面积分成相等的四份. ⑴以点O为圆心,以3个单位长度为半径作圆;

⑵在大⊙O上依次取三等分点A、B、C;

(3)连接OA、OB、OC.

则小圆O与三等份圆环把⊙O的面积四等分. (4)作⊙O的一条直径AB;

(5)分别以OA、OB的中点为圆心,以3个单位长度为半径作⊙O1、⊙O2;

则⊙O1、⊙O2和⊙O中剩余的两部分把⊙O的面积四等分。

指出对称性 既是轴对称图形又是中心对称图形. 轴对称图形 既是轴对称图形又是中心对称图形.

21.解:(1)连接OA、OB、OC、OD.•••••••••••••••••••••••••••••••••••••••••••••••••••1分

∵ •3分

∴ ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••4分

(2)过点D作DE⊥AB于点E,

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••6分

∵AB∥DC,∴ .

又∵ ,

∴ .即 .•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••9分

23.解:(1)∵ 与x轴交于A(5,0)、B(-1,0)两点,

∴ , 解得

∴抛物线的解析式为 .••••••••••••••••••••••••••••••••••••••••••••••••••••••••3分

(2)过点 作 ⊥x轴于E,AA/与OC交于点D,

∵点C在直线y=2x上, ∴C(5,10)

∵点A和 关于直线y=2x对称,

∴OC⊥ , =AD.

∵OA=5,AC=10,

∴ .

∵ , ∴ .∴ .•••••••••••••5分

在 和Rt 中,

∵∠ +∠ =90°,∠ACD+∠ =90°,

∴∠ =∠ACD.

又∵∠ =∠OAC=90°,

∴ ∽ .

∴ 即 .

∴ =4,AE=8.

∴OE=AE-OA=3.

∴点A/的坐标为(﹣3,4).•••••••••••••••••••••••••••••••7分

当x=﹣3时, .

所以,点A/在该抛物线上.••••••••••••••••••••••••••••••••8分

(3)存在.

理由:设直线 的解析式为y=kx+b,

则 ,解得

∴直线 的解析式为 .••••••••••••••••••9分

设点P的坐标为 ,则点M为 .

∵PM∥AC,

∴要使四边形PACM是平行四边形,只需PM=AC.又点M在点P的上方,

∴ .

解得 (不合题意,舍去)当x=2时, .

∴当点P运动到 时,四边形PACM是平行四边形.••••••••••••••••••••11分

热门标签